

7. Sekundärliteratur

Festschrift zur zweihundertjährigen Jubelfeier der Franckeschen Stiftungen am 30. Juni und 1. Juli 1898.

Halle (Saale), 1898

Messweise, Widerstände - Bäder.

Nutzungsbedingungen

Die Digitalisate des Francke-Portals sind urheberrechtlich geschützt. Sie dürfen für wissenschaftliche und private Zwecke heruntergeladen und ausgedruckt werden. Vorhandene Herkunftsbezeichnungen dürfen dabei nicht entfernt werden.

Eine kommerzielle oder institutionelle Nutzung oder Veröffentlichung dieser Inhalte ist ohne vorheriges schriftliches Einverständnis des Studienzentrums August Hermann Francke der Franckeschen Stiftungen nicht gestattet, das ggf. auf weitere Institutionen als Rechteinhaber verweist. Für die Veröffentlichung der Digitalisate können gemäß der Gebührenordnung der Franckeschen Stiftungen Entgelte erhoben werden.

Zur Erteilung einer Veröffentlichungsgenehmigung wenden Sie sich bitte an die Leiterin des Studienzentrums, Frau Dr. Britta Klosterberg, Franckeplatz 1, Haus 22-24, 06110 Halle (studienzentrum@francke-halle.de)

Terms of use

All digital documents of the Francke-Portal are protected by copyright. They may be downladed and printed only for non-commercial educational, research and private purposes. Attached provenance marks may not be removed.

Commercial or institutional use or publication of these digital documents in printed or digital form is not allowed without obtaining prior written permission by the Study Center August Hermann Francke of the Francke Foundations which can refer to other institutions as right holders. If digital documents are published, the Study Center is entitled to charge a fee in accordance with the scale of charges of the Francke Foundations.

For reproduction requests and permissions, please contact the head of the Study Center, Frau Dr. Britta Klosterberg, Franckeplatz 1, Haus 22-24, 06110 Halle (studienzentrum@francke-halle.de)

Messweise, Widerstände - Bäder.

Die Bestimmung der Widerstände geschah mit Hülfe der Wheatstoneschen Brücke unter Benutzung eines Telephons; der Brückendraht war kalibriert.

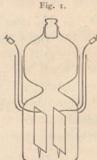
Für die konzentrierteren Lösungen der ersten Versuchsreihe wurde ein Widerstandssatz von Hartmann und Braun benutzt, der auf Normalwiderstände bezogen war, für die der letzten Versuchsreihe ein Widerstandskasten nach Ostwald. Die verdünnteren Lösungen machten Vergleichswiderstände nötig, die bis 50 000 S.E. durch Auftragen von reinem Graphit auf rauh geschliffenes Glas erhalten wurden. Dieselben zeigten sich allerdings nicht ganz konstant, trotzdem der Graphit durch übergekittete Glasstreifen geschützt war, doch wurden die eintretenden Änderungen mit Hülfe eines Universalwiderstands von Hartmann und Braun im gegebenen Falle ermittelt. Zur Beurteilung der Konstanz solcher Widerstände gebe ich folgende kleine Tabelle, die einen Zeitraum von 4 Jahren umschliefst. Unter I bis VI finden sich in Siemens-Einheiten die Widerstände des von mir benutzten Graphitwiderstandssatzes, in der ersten Kolumne steht unter Z die zugehörige Zeit der Messung.

Z			I	II	III	IV	V	VI
4. Oktbr.	93		1091	2 1 4 4	5 430	10 790	21 440	52 500
13. "			1 090	2 146	5 4 5 0	10 830	21 440	52 600
10. ,,		140	1 090	2 141	5 433	10 806	21 420	52 600
Juli	97		1 155	2 2 5 5	5 534	11030	21 670	51 600

Die Widerstandsgefäße hingen in einem mit Öl gefüllten Becherglase, das sich selbst innerhalb eines größeren Wasserbades befand. Als Temperatur der Lösung galt die des Ölbades, welche ungefähr 15 Minuten dadurch konstant gehalten wurde, daß während dieser Zeit eine genaue Regulierung der Wärmezufuhr an das äußere Wasserbad stattfand.

Widerstandsgefäße.

Die zu den folgenden Widerstandsbestimmungen benutzten Gefäse I, II, III hatten die durch nebenstehende Fig. 1 verdeutlichte Form; am oberen Rande waren dieselben zur besseren Handhabung von einer angekitteten Holzplatte umfast. Die Elektroden bestanden aus Platin, hatten die Größe von 4 gcm und waren


3 bis 7 mm von einander entfernt; dieselben waren nicht platiniert.

Die Kapazität wurde durch sehr verdünnte Lösungen ermittelt,
deren Leitfähigkeiten in einem Hilfsgefäse bestimmt worden waren, welches
selbst eine ziemlich große Kapazität besaß und die Auswertung mit kon-

selbst eine ziemlich große Kapazität besaß und die Auswertung mit konzentrierter Kochsalzlösung zuließ. Die äußere Platinzuleitung von den Klemmen bis zu den Elektroden wurde aus den Dimensionen des Drahtes entnommen. Bezeichnet man dieselben mit Z, die Kapazität mit C, so ergab sich als Mittelwert mehrerer Messungen, die gut übereinstimmten:

$$C_1 = 1481$$
 $C_2 = 1173$ $C_3 = 599,7$ $Z_1 = 0,154$ $Z_2 = 0,146$ $Z_3 = 0,142$.

Kleinere Widerstände in diesen Gefäsen zu messen, in denen die Elektroden einander so nahe gegenüber stehen, erscheint nicht angängig; bei den folgenden Untersuchungen setzte bereits die Ausgangslösung mit einem Widerstande von 100 in III ein, sodas Polarisation hier ausgeschlossen erschien. Die gleichsam indirekte Bestimmung kleiner Kapazitäten, wie sie oben durchgeführt wurde, halte ich für empfehlenswerter als die direkte mit Hilfe gesättigter

