

7. Sekundärliteratur

Zu der öffentlichen Prüfung, welche mit den Zöglingen der Realschule I. Ordnung im Waisenhause zu Halle am ... in dem Versammlungssaale des neuen ...

Halle (Saale), 1838

Die electrisch-vielaxigen Krystalle.

Nutzungsbedingungen

Die Digitalisate des Francke-Portals sind urheberrechtlich geschützt. Sie dürfen für wissenschaftliche und private Zwecke heruntergeladen und ausgedruckt werden. Vorhandene Herkunftsbezeichnungen dürfen dabei nicht entfernt werden.

Eine kommerzielle oder institutionelle Nutzung oder Veröffentlichung dieser Inhalte ist ohne vorheriges schriftliches Einverständnis des Studienzentrums August Hermann Francke der Franckeschen Stiftungen nicht gestattet, das ggf. auf weitere Institutionen als Rechteinhaber verweist. Für die Veröffentlichung der Digitalisate können gemäß der Gebührenordnung der Franckeschen Stiftungen Entgelte erhoben werden.

Zur Erteilung einer Veröffentlichungsgenehmigung wenden Sie sich bitte an die Leiterin des Studienzentrums, Frau Dr. Britta Klosterberg, Franckeplatz 1, Haus 22-24, 06110 Halle (studienzentrum@francke-halle.de)

Terms of use

All digital documents of the Francke-Portal are protected by copyright. They may be downladed and printed only for non-commercial educational, research and private purposes. Attached provenance marks may not be removed.

Commercial or institutional use or publication of these digital documents in printed or digital form is not allowed without obtaining prior written permission by the Study Center August Hermann Francke of the Francke Foundations which can refer to other institutions as right holders. If digital documents are published, the Study Center is entitled to charge a fee in accordance with the scale of charges of the Francke Foundations.

For reproduction requests and permissions, please contact the head of the Study Center, Frau Dr. Britta Klosterberg, Franckeplatz 1, Haus 22-24, 06110 Halle (studienzentrum@francke-halle.de)

urn:nbn:de:hbz:061:1-181344

ftalle*) abgebildet Fig. 8—12. in jener Differtation. Die Unsymmetrie tritt bei ihnen auf eine ausgezeichnete Weise auf. Die einfachen Krystalle zeigen an dem einen Ende der Hauptage die Fläche senkrecht gegen dieselbe, und horizontale Prismen, die meist nur einer Age parallel sind; am andern Ende findet sich nur die Fläche senkrecht gegen die Hauptage, entweder glänzend oder parallel den Seiten der rechtwinskligen Basis gestreift. Man ist ansangs geneigt, die Zwillinge für die einfachen Krysstalle zu halten, indem diese als vollständige symmetrische Krystalle erscheinen; sie sind aber durch zwei einfache mit der Grundsläche zusammengeseste Krystalle gebildet. Auch die äußere Form deutet die Zwillingsbildung, wenn auch schwach, doch deutlich an. — Das obere Ende der Age des einfachen Krystalles, welches die Flächen der hos rizontalen Prismen trägt, ist +, —; das untere dagegen —, +.

Die Temperaturerhöhung darf nur außerst gering seyn, indem die Electricität ebenso schnell als sie auftritt, wegen der leichten Schmelzbarkeit des Salzes auch wies ber verschwindet.

Die Electricitat aller brei funftlichen Arnftalle, bes Zuckers, ber Weinfaure und bes Seignettesalzes ift ftark.

Die electrisch : vielagigen Arnftalle.

Wir konnen diese Arpstalle wieder eintheilen nach der Zahl ihrer Ugen, indem von den vier hieher gehörigen Arpstallen der erste zwei (wenigstens innerhalb gewisser Temperaturgrangen), der zweite drei, die beiden letten sogar noch mehrere Ugen besiten.

1) Der Titanit. Haup fand ihn electrisch, aber nicht in allen seinen Formen; er schreibt die Electricität nur den im Aeußern unspummetrisch gebildeten zu. Bei oft wiederholten Bersuchen gelang es mir indeß zulest auch, die einfachen grunen, mit Chlorit gemengten, regelmäßigen Arpstalle electrisch zu finden. Haup giebt nichts Maheres über die Bertheilung der Electricität an, die sich ihm nur so schwach darbot, daß er sagt, man muffe Lust haben, sie zu sinden, um sie wahrzunehmen.

^{*)} Das Berhaltniß ber Hauptare zu ber einen Diagonale ber Basis ift 1:0,8098, Es finden sich bie Gestalten oP, Poo, 2Poo, oPoc, oPoc.

Die bon mir jur Untersuchung angewandten grunen Renftalle glichen in Der Form dem in G. Rofe's*) Gnaugural = Differtation über den Titanit Rig. 2., und Daraus in Raumann's Rryftallographie Rig. 778. abgebildeten Rryftalle; nur find Die Prismenfiachen noch niedriger. Beim Erwarmen biefer einfachen Rruftalle ift Die Electricitat nicht ftart genug, um deutlich mabrgenommen werben gu fonnen; daß felbe gilt auch von dem Unfange des Erfaltens, wenn fie ftart erhipt worden find. Bei meiterer Abfahlung aber, ungefahr in einer Temperatur von 580 C., zeigen fie vier electrische Pole, zwei positive und zwei negative, von benen merfwurdig genug Die beiden positiven und die beiden negativen einander diametral gegenüberliegen. Die positiven Pole liegen auf der Flache P und P', oder auf den Ranten gebildet durch die Rlachen P und x', und P' und x; die beiben negativen dagegen auf ben Rlachen y und y' oder den Ranten gebildet von y und x, und y' und x'. Ihre Lage lagt fich nicht genau bestimmen, und ich bege bie Bermuthung, daß fie vielleicht in den Endpuncten ber beiden fchiefwinkligen Uren liegen. Geben wir alfo um den Arpftall in der Chene des flinodiagonalen Sauptichnittes herum, fo treffen wir zwei positive Pole, welche mit zwei negativen abmechfeln.

Die Zwillinge bes Titanits, welche im Allgemeinen eine ftarfere Electricitat zeigen, geben fur diese Beobachtung eine neue Bestätigung. Ein Zwillingsfrustall, an bem der eine Arnstall groß war, ber andere sehr fleine aber auf der einen Seite des größern auffaß, gab fur den größern Arnstall folgende Resultate.

Temperatur.	Ele	ctric	itāt	tn
All along the parties	P'.	y.	P.	y'
$25^{\circ} - 50^{\circ}$	+	+	BELLER	
500 - 1000			+	+
1000				
1000	11411 40		transian	
1000 - 500	+	-	+	-
500 - 250	du r a a	-	+	+

Die Temperaturen find nur ernahrend, und bezeichnen feinesweges genau die Grange biefer Wechsel. Darauf fommt es jest auch weniger an.

Betrachten wir den Krystall zu Anfang des Erwärmens und zu Ende des Erkaltens, so finden wir einen vollständigen Gegensatz; nicht so dagegen innerhalb der Temperatur 50 — 100°. Innerhalb dieser Temperatur zeigt sich beim Erkalten

^{*)} De sphenis atque titanitae systemate crystallino. Berol. 1820.

die an den einfachen Arpstallen beobachtete merkwürdige Electricitätsvertheilung. Man könnte geneigt seyn, nicht die gegenüberliegenden Pole als zusammengehörig und eine Are bildend aufzufassen, sondern die zwei neben oder vielmehr unter einander lies genden, so daß die eine electrische Are von P' gegen y', die zweite dagegen von P gegen y gerichtet wäre. Wie erhielten dann zwei parallele Aren, die an ihren beiden Endpuncten stets entgegengesetzte Electricität hätten, sowohl beim Erwärmen als auch beim Erkalten.

Die Durchwachsung ber Zwillinge, oder die Ausbildung der Zwillingskryftalle über die Zusammensetzungsfläche hinaus ift gleichfalls ein neuer Beweis für diese Berstheilung, und die Bertheilung der Electricität in diesen Zwillingen konnte nur so der Bertheilung derfelben in den übrigen Kryftallen gleich werden. Doch davon nachher.

An den einfachen grunen Arystallen komte ich keine unsymmetrischen Flachen besmerken; wohl aber an den Zwillingen. Es lag auf der Flache x (d. h. auf der Seite, auf welcher der kleine Arystall aufgewachsen ist, und P' und y sich sinden) nach rechts und links zu eine gegen x nur sehr schwach geneigte Flache; ihre krystallogras phische Bestimmung war nicht möglich. Auf der entgegengesetzten Seite x' sinden sied keine Spuren davon.

2) Der Bergkrystall. Richt minder eigenthumlich als im Titanit fand ich die Bertheilung der Electricität im Vergkrystall. Es hat dieser nämlich drei electrissiche Ugen, welche ungefähr mit den drei Randagen des Arpstalles zusammen fallen. Db noch eine vierte Ure nach der Hauptage sich sinde, darüber später mehr.

Wir haben also sechs Pole, drei positive und drei negative, welche mit einander auf den Prismenstächen abwechseln. Es scheint anfangs, als könnte man die Electriscität einer Prismenstäche nicht aus der Arpstallgestalt bestimmen, da sie ja alle gleichsartig sind. Es gelingt dieß indeß doch durch die Unsymmetrie, welche in der Ausbildung der Rlächen sowohl der Pyramide als des Prismas herrscht.

Am stärkken electrisch habe ich bissett die Arpstalle von Striegan in Schlesien gefunden, die durch ihre Größe und vollkommene Ausbildung an beiden Enden nicht minder ausgezeichnet sind, als durch die constante Unsymmetrie der Flächen. Un dem einen Endpuncte nämlich, den ich den obern A nennen will, sind drei Flächen der sechsseitigen Pyramide abwechselnd groß, und die drei dazwischenliegenden klein, so daß sie das Ansehen zweier Rhomboeder erhalten. Um untern Endpuncte B dagegen sind meist nur zwei gegenüberliegende Flächen groß, die übrigen vier aber klein, so daß statt der Polecke eine Kante entsteht. Die beiden größten Pyramidenstächen in B sinen dann auf den beiden breitesten gegenüberliegenden Flächen des Prismas. Sine dieser breitesten Prismenstächen trägt dann auch in A eine große Pyramidenstäche

die andere dagegen eine kleine. Bezeichnen wir nun diese breiteste Prismensläche, welche sowohl in A als B eine große Ppramidensläche trägt mit 1, die gegenüberlies gende mit 4, und denken uns den Arpstall mit der Fläche 4 so vor uns auf den Tisch gelegt, daß das Ende B auf uns zu, A aber von uns abgewandt ist, so sey die rechts neben 1 liegende Fläche 2, die zwischen 2 und 4 (rechts unter 2) liegende 3; die links neben 1 liegende 6, und die zwischen 6 und 4 (links unter 6) liegende 5. Die Pole liegen nun nicht in der Mitte der Fläche, sondern stets rechts nach derzenisgen Kante hin abgelenkt, deren anliegende Fläche durch die größere Zahl bezeichnet ist. Es liegt also der Pol von 1 nicht mitten in der Fläche 1, sondern abgelenkt nach der Kante, gebildet durch die Flächen 1 und 2, und beherrscht sogar noch einen kleinen Theil der Fläche 2, welcher an der Kante 1.2 anliegt; der Pol auf 2 liegt ebenso nach der Kante 2.3 abgelenkt u. s. w. Ich will der Kürze halber den Pol auf 1 (der aber nach 1.2 abgelenkt ist) bezeichnen durch 1, und so auch die übrigen. Dann ist 1 + , -; 2 - , +; 3 + , -; 4 - , +; 5 + , -; 6 - , +.

Um regelmäßigsten, obwohl schwächer, kann man alle sechs Pole wahrnehmen, wenn der Arnstall an den Endpuncten seiner Hauptare gehalten ist. Liegt der Arnstall dagegen auf einer Seitenstäche, so wird die daselbst befindliche Electricität mehr oder weniger abgeleitet, und die entgegengesehte gewinnt dadurch die Oberhand; hiedurch werden dann oft Pole unterdrückt, die aber gleich wieder hervortreten, sobald der Arnstall auf eine andere Fläche gelegt wird. Wird ein + Pol durch die Unsterlage abgeleitet, so zeigt der Arnstall starf die negativen Pole; an der Stelle der positiven sindet sich entweder noch sehr schwache positive Electricität, oder keine, oder selbst negative, die aber bedeutend schwächer ist, als auf den negativen Polen. Das

Umgefehrte geschieht, wenn ein negativer Pol abgeleitet wird.

Es sind ferner nicht alle Pole gleich frark; es scheint im Allgemeinen die starkste electrische Aze mit der größten Randage zusammen zu fallen. Die Pyramidenstächen sind in den Theilen, welche dem Prisma zunächst liegen, den entsprechenden Prismenssächen gleichnamig electrisch; doch entstehen Unregelmäßigkeiten hierin, indem die Pole nicht immer mitten auf den Prismenslächen grade zwischen beiden Endpuncten der Hauptage liegen, sondern dem einen Endpuncte näher gerückt erscheinen, als dem andern. Sollte nicht diese Berschiedung der Pole in Verbindung stehen mit der Lage der eigenthümlichen plagiedrischen Flächen, welche das Verhalten des Vergkrystalles zum Licht anzeigen? Mitunter fand ich die Pole gerade da, wo diese Flächen auftrezten. Es ist indes unmöglich die Lage der Pole genau zu bestimmen. Die beim Erskalten negativen lassen sich im Allgemeinen genauer bestimmen als die positiven. Es sinden sich nämlich außer den drei Prismenstächen auch gemeiniglich noch die beiden

Endpuncte der Sauptage beim Erfalten positiv, so daß die Große der Flache, über welche die positive Electricität ausgebreitet ist, bedeutend großer ist als die, welche die negative beherrscht.

Ich mochte auch behaupten, daß nach der Sauptare noch eine electrische Ure, wenn gleich schwächer ausgebildet, fich finde. Ich habe zwar fo eben angeführt, daß beide Enden gewöhnlich beim Erfalten positiv find, muß aber noch bingufugen, daß A an Starte B ubertrifft, was man freilich als naturliche Rolge ber Ausbildung von A als Ecfe und B als Rante ansehen konnte. Un zwei Rroftallen indeß fand ich den untern Endpunct negativ. Dagu fommt noch ein anderer Berfuch. Ich ließ einen Bergfruftall burchichneiden, und die Durchichnittsflachen maren etwas conver, fo daß, wenn beide Theile auf die neuen burch ben Schnitt entftandenen Rlachen geftellt wurden, fie nur mit den Puncten die Metallplatte berührten, die ungefahr die Mitte ber Schnittflachen ausmachten. In beiben Balften zeigte fich bei Diefer Stellung eine gang verschiedene Erscheinung. Der Theil, welcher A enthielt, ward beim Er: kalten gang -, beim Erwarmen dagegen +; es mußte alfo ber Gegenfat abgeleitet fenn. Der Theil, welcher B enthielt, war beim Abfühlen gang +, ce mußte alfo - abgeleitet fenn. Die ableitenden Puncte hatten fruher aneinander gefeffen, und boch leitete ber eine +, der andere - ab. Deutet dief nicht ebenfalls auf eine electrifche Polaritat nach ber Hauptare? Als die Arpftalle auf die Prismenflachen gelegt wurs ben, zeigten fie fich wieder vollfommen regelmäßig, und ebenfo, als die Converitat hinweggeschliffen war, fo daß die Ranten aller feche Prismenflachen aufftanden.

Die untersuchten Arnstalle hatten mehr als 1", ja oft mehr als 2" in der Lange, und oft auch mehr als 1" im Durchmesser. Die Temperatur, welche zum merkbaren Erscheinen der Electricität des Bergkrustalles erfordert wird, ist nicht bes deutend. Bei einem seit 24 Stunden nicht erwärmten Arnstalle genügte schon eine Erhitzung bis 37° C. Beim wiederholten Erhitzen kann sie bedeutend niedriger fepn.

3) Der Rhodicit. Dieß von G. Rofe*) entbeckte und von ihm gleichfalls in Bezug auf seine Electricität untersuchte Mineral krystallisset in beutlichen Dodeskaedern, an denen nur die abwechselnden dreistächigen Ecken durch sehr glatte und glanzende Flächen eines Zetraeders schwach abgestumpft sind. Die electrischen Aren verbinden zwei entgegengesetzte dreissächige Ecken des Dodekaeders, sind also der Zahl nach vier. Diejenigen Ecken, an welchen sich die Zetraederslächen sinden, werden bei

^{*)} Pogg. Annal. 89. 821.

abnehmender Temperatur positiv electrisch, bei junehmender negativ, bie nicht abges frumpften find beim Erkalten negativ, beim Erwarmen positiv.

Ich habe bissett feine Arnstalle dieses Minerales untersuchen können, weiß also nicht, ob die neuen am Boracit von mir aufgefundenen Verhältnisse auch von den Arnstallen des Rhodicits gelten. Die Gleichheit seiner Form indeß mit der Form des Boracits, und die Uebereinstimmung beider in der Lage der schon beobachteten electrischen Aren macht die Vermuthung mehr als wahrscheinlich, daß auch in den vierslächigen Schen des Rhodicits neue electrische Pole Liegen, und daß sämmtliche Pole mehrsachen Wechseln unterworfen sind.

4) Der Boracit. Haup nahm vier electrische Agen an, welche ebenfo liegen und dieselbe Polarität haben, wie fie G. Rose an den Arpstallen des Rhodicits fand. Die Würfelecken mit den unsymmetrischen Flächen sind beim Abkühlen positiv, beim Erwärmen negativ; die vier andern verhalten sich umgekehrt.

Es fiel mir bei Wiederholung dieser Versuche ein, daß auch in der Mitte der Burfelflächen, oder was dasselbe ist in den vierflächigen Eckpuncten des Dodekaeders neue Pole sich finden könnten. Meine Vermuthung ward durch die Versuche bestätigt. Ja ich bin der Meinung, (und die deshalb angestellten Versuche sind nicht dagegen), daß auch in der Mitte der Würfelkanten, oder der Mitte der Dodekaederslächen, oder in den 12 Trapezoederecken noch 12 neue Pole liegen.

Als ich indeß die schwache Kraft der Pole in der Mitte der Würfelstächen zu verstärken suchte, bemerkte ich merkwürdige Umkehrungen. Eine genauere Unterzsuchung gab Resultate, welche ich lieber durch Darlegung einzelner derselben, als durch Beschreibung mittheiten will. Ich wähle hiezu zunächst die mit den Zahlen XIX und XX in obigen Abhandlungen bezeichneten und an einem Dodekaeder angestellten Bersuche, wo also die Mitten der Bürkelssächen als octaedrische vierstächige Ecken ausgebildet waren. Ich bezeichne die Flächen mit den Zahlen 1—12, und die Ecken durch die Zahlen der umsiegenden Flächen. Im Bersuch XIX stand diesenige Aze des Krostalles, welche durch die dreistächigen Ecken 1.2.5. und 7.11.12. geht, vertical, so daß die Ecke 1.2.5. die obere war. Die sieben hier angeführten Ecken bilden die obere Hälfte. Im Bersuch XX stand dieselbe Aze vertical, aber die Ecke 7.11.12, war die obere. Die sieben hier angeführten Ecken bilden die andere Hälfte.

XIX.

	XIX.	
Beim	Ermarn	nen

1.2.5.	-	4	_	+	+ -	-	-	+	+	+	+	+	etc.
2.3.6.	+ .	+ -	_	+	+ -	-	-	-	0	0	-	-	etc.
1.2.3.4.	+ -		-	+	+ -	_	+	+	+	+	+	+	etc.
1.4.8.													
1.8.9.5.	+			+	+ -			-	0	0	1	1)	etc.
9.5.10.	4			+	+ -	-	-	-					
5.2.6.10.	+ .		د.	+	+ -	- +	+	+	+	+	+	+	etc.

Beim Erfalten.

1.2.5.	++-+++++++	etc.
2.3.6.	+++++-	etc.) sel yes
1.2.3.4.	++++++	etc.
1.4.8.	++++	etc.
1.8.9.5.	+-+++++	etc.
9,5.10.		etc.
5.2.6.10.	+-++++++	etc.

if ends doing to be forther bedone no XX.

Beim Ermarmen.

7,11.12.	0 + + 0 etc.
8.9.12.	-+++00+ etc.
8.12.7.4	++++
4.7.8.	-++++0+ etc.
3.6.7.11.	-+++++++ etc.
6.11.10.	-++-++++ etc.
10,11,12,9.	0 + + + + + + etc.

a dill

SIE alti

25 e	im	Er	Eal	ten.

7.11.12.	-+-	2500 [6]	_	-	-		etc.
8.9.12.	0 + -	 -+	+	+	+	+	etc.
8.12.7.4.	++-	 4				0	etc.
4.7.3.	++-	 	+	+	+	+	etc.
3.6.7.11.	++-	 -1			-	0	etc.
6.11.10.	++-	 	+	+	+	+	etc.
10.11.12.9.	++-	 			_	0	etc.

Betrachten wir biefe Berfuche genauer, fo finden wir an allen Burfelecken gleich viel Bechfel. Die einen find beim Erwarmen - + - +, beim Erkalten + - +; bie andern vier bagegen + - + - beim Erwarmen, und - + - beim Erfalten. Die fechs octaebrischen oder vierflachigen Ecken bagegen zeigen eine merkwurdige Berichies denheit. Die drei Ecken in XIX find beim Erwarmen + - + -+, beim Erkalten + - + - ; Die drei in XX beim Erwarmen - + - +, und beim Abfahlen + - 0. Scheinbare Musnahmen finden fich in diefen Bersuchen an den mit 1, 2 und 3 bezeichneten Stellen. Gine borber angestellte specielle Untersuchung jeder ein: gelnen Ecte (Die ich ebenfalls in jener Abhandlung mitgetheilt habe) zeigt jedoch, daß Diese Eden durchaus feine Ausnahmen machen; es find die Wechsel hier nicht beobachs tet, weil fie mahrend ber Untersuchung ber übrigen Ecken Statt fanden. Doch muß ich darauf aufmerkfam machen, daß nicht die Wechfel an allen Polen zu gleicher Zeit eintreten; nur der lette Bechfel beim Erwarmen und Erfalten zeigt fich überall giem= lich gleichmäßig, was noch mehr bei den einzelnen Untersuchungen als bier bervors trat. Die brei octaebrifchen Ecken, welche julest beim Erkalten Rull find, haben mahricheinlich in tieferer Temperatur noch einen Wechfel. Man konnte vermuthen, ihre negative Electricitat fen durch die positive der übrigen unterdruckt. Es geht aber aus den fpeciellen Berfuchen hervor, daß gegen Ende des Erfaltens gerade die negative Electricitat frarter ift, gegen Ende ber Erwarmung bagegen bie positive. Wir werden diese Thatsache auch recht gut verstehen, wenn wir obige Bersuche ans feben, und gegen Ende des Erwarmens zehn positive Pole gegen vier negative, gegen Ende bes Erfaltens bagegen gehn negative gegen vier positive finden.

Betrachten wir nun die Vertheilung der Efectricität an diefem Dobefaeder ge= nauer, so werden wir sogleich zu der Meinung geführt, daß die Boracitfrystalle wirf= lich eine Sauptare haben, welche mit einer der Ecken = oder rhomboedrischen Agen des Würfels zusammen fällt, und in unserm Fall durch die Ecken 1.2.5. und 7.11.12. geht. Rehmen wir bloß auf die Electricität der Würfelecken Rücksicht, so ist es gleich, welche von den Azen man als Hauptage wählt. Dieß ist aber nicht mehr der Fall, so bald wir den Unterschied, welcher sich zwischen den Octaederecken sindet, ins Auge fassen; wir mussen dann drei gleiche Octaederecken um den einen Endpunct der Hauptage, und die drei andern um den andern vertheilen. Mit dieser Ansicht stimmt auch, wie schon oben bemerkt wurde, die Beobachtung der doppelten Strahlenbrechung, wobei Brewster die eine optische Aze zwischen zweien gegenüberliegenden Eckpuncten des Würfels fand.

Es ist noch nothig, auch Bersuche über die Electricität eines Boracitwürfels mitzutheilen. Ich hatte ihn ebenso wie das Dodekaeder durch die Güte des Herrn Professor Germar erhalten. Es sind hier nicht so viele Wechsel beobachtet, weil die Temperatur nicht so sehr erhöht wurde, als in den Versuchen über das Dodekaeder. Ich habe hier die Ecken mit den Jahlen 1—8 bezeichnet, und die Flächen mit den Buchsstaden a, a'; b, b'; e, e'; so daß a und a' sich gegenüberliegen. Die Eckpuncte der Fläche a waren 1, 2, 3, 4 u. s. w. Bei den Versuchen sag der Arvstall jedes Mal auf der Fläche, welche sich der untersuchten gegenüber besindet. Die Nummer der Versuche bezieht sich gleichfalls auf jene Abhandlungen.

947	Y 7	
- X	10.1	

Temperatur: Grade	25,6.	46,5.	69,8.	93,0	. 11	6,3.	139,5.	162,8	. 139,5	. 116,3	. 93,0.	69,8.	46,5.	28,1.
1.				+		+	-	1-	-		-+	+	+	etc.
2.	+	+	+			-	0+	1+	. +	+-	=	-	-	etc.
8.	16-	-	_	+		+	-	-	-		-+	+	+	etc.
4.	1	- +	+		- 25	1 (1)	0+	1+	- 4	- +-	7	-	-	etc.
a.		1				+		1-	-		-	-	_	etc.
							XLII							
Temperatur	28. 4	6,5.	69,8.	93,0.	116	,3. 15	89,5. 1	65,1. 1	39,5. 1	16,3. 9	3,0. 69	18. 46	5. 30,	3.
5.	+	-	- 1		-	_	x	+ 10	+	+ +		-		+ etc.
6.			-8-	-	+	+	_	1-		-	+	+ -	+ -	+ etc.
7.	4		+ +		A A	-	-+	1+	+		+	-	-	+ etc.

emperatur			30,000	,0,0.	10/0, 1	03/3. 1	03/1. 1	OJIO	116,3.	95,0.	59,8. 4	6,5. 3	0,3.
1.	_	_	_	+	+		_		111	-+	- +	+	etc.
2.	+	+	+	-	- 0	0+1	+	+	+	+-		_	etc.
6.	_			+	+	-	-	-	-	-+	+	+	etc.
5.	_+	+	+-		-0	0 -	+	+	+	1-	Service of the least of the lea		oto
b.	0	0	0+	?0	0	0	2	9	-	1	1	olices.	etc.

XLIV.

Temperatur	30,3.4	6,5. (69,8. 9	3,0.1	16,3.	189,5. 1	52,8. 1.	39,5.	116	8, 98,0	69.8	46.5	98	
3.	-	-	-	+	+	_					1	. 20/5		-
4.	+	+	+0		0	+0	ala	1	+		T	+	+	etc.
8.		shire		+	+			T	+				+	etc.
THE RESERVE	10.00		. All You	1	2410	3)	VIII.	NE OF	-	-+	+	+	+	etc.
7.	4	+	+-		_	0-	+	+	+	4-	-			etc.
b'	_	_	_	+	0	0+	_	-		1	1	1	1	oto.

XLVI.

Temperatur	30. 46	,5. 69	,8. 93	,0. 11	6,3.1	89,5. 16	7,5. 1	189,5.	116,3	.93,0.	69,8.	46,5.	80,8	
1.	-	-	-	+	+		1-	_	_	+	+	+		etc.
4.	+	+	+-	_	_	_4)	+	+	+	_				etc.
8.		-		+	+	-	_	_	_	+	+	+		etc.
5.	+	+	+	-	-	_5)	+	+	+		_	_		etc.
C.						+0	+	+	+	+	+	+	+	etc.

XLVI.

2.	+	+	+		-	— ₆)	+	+	+	+-	-	_	etc.
3.	_	-	-	+	+	+	-	nilsten.	-	-+	+	+	etc.
7.	+	+	+	-	-		+	+	+	+-	_	-0	etc.
6.	_	_	-	+	+	+	-	-		-+	+	+0	etc.
c'	-	V	_	+	+	+0	_	_	1	+	+	+0	etc.

An den mit den Noten 1—6 bezeichneten Stellen war die Temperatur nicht hoch genug gestiegen, so daß der zweite Wechsel beim Erwärmen noch nicht eintrat; bei fortgesetztem Erwärmen wäre er aber sogleich erfolgt. Ferner muß ich noch bez merken, daß die Umkehrungen selten so gleichzeitig erfolgen als es hier in den kuz dargestellten Versuchen aussieht; es waren nämlich die einzelnen Pole bedeutend öfter untersucht, als es hier dargestellt ist. Ich wählte diese Form nur der leichtern Uebers sicht wegen. — Auch hier zeichnen sich wieder die Mitten dreier Würfelstächen vor den übrigen aus, was schon aus der Unterdrückung der Electricität der Würfelecken gegen Ende der Erkaltung hervorgeht.

Es gilt von allen thermoelectrifchen Rryftallen, daß bie Glectricitat nie gleich beim erften Erwarmen in ihrer gangen Starfe auftritt; beim erften Abfuhlen icheint fie icon ziemlich entwickelt zu fenn. Gie machft beim wiederholten Ermarmen. Sies mit hangt es auch gufammen, daß fie beim erften Erwarmen erft in hoherer Tem= peratur mahrgenommen wird als bei wiederholtem; fie ift ichmacher, und es bedarf Daber einer großerer Temperaturveranderung, um fie fo ju verftarfen, daß fie am Eles ctrometer mahrnehmbar wird. Der Brund ber ftarfern Electricitat bei wiederholtem Erwarmen ift fein anderer, ale daß die Theile des Arpftalles leichter in einen ans bern Buftand übergeben, wenn fie fchon vorher in demfelben gewesen find; biefer Uebergang, Diefe Beranderung ift aber eben die Urfache der electrischen Polaritat. Dir finden eine abnliche Erfcheinung bei ben von Munct af Rofenfcbold*) uns tersuchten Ladungephanomenen. Er will bemerft haben, daß ein Rorper, ber icon einmal ftark gelaben gewefen, leichter eine neue Ladung annimmt. (Auch bei ber Ladung ift die Richtung nicht gleichgultig, indem ein Stud frustallifirten Zinnobers eine viel ftarfere Ladung annimmt, wenn bie Bertheilung in ber Richtung ber Rrys Rallnadeln geschieht, als fenfrecht darauf.)

Ich habe nie genau messende Bersuche über den Zusammenhang zwischen der Stärke der Electricität und der Größe des Arpstalles und seiner Temperatur anges stellt. Becquerel**) zählte die Schwingungen eines in einem erhisten Glase aufzgehangenen erkaltenden Turmalines, welche er zwischen zwei Eiseplatten machte, die mit den Polen einer Zambonischen Säule in Berbindung waren. Er glaubt dadurch bewiesen zu haben, daß die Stärke der Electricität nicht proportional der Schnelligskeit der Temperaturabnahme sey. Gleich nach dem Beginn der Abkühlung, wo die

^{*)} Pogg. Annal. 43. 220.

^{**)} Becq. Traité d'électr. et du magn. II. 62.

Temperatur am fonellften abnimmt, fant er febr geringe Electricitat; bei einem bis 115° erhitten Turmalin fand er das Maximum ber Starfe gwifchen 70-40°. 3ch glaube aber nichts deftoweniger, daß bennoch die Starfe proportional der Abfuhlungs= geschwindigkeit fen. Wenn numlich ber Turmalin, ber ifolirt aufgehangen ift, ans fångt zu erfalten, fe entwickelt er die umgefehrte Electricitat als beim Erwarmen und hat also im Unfange des Erfaltens die von der Erwarmung herruhrende entgegenge= feste Electricitat zu neutralifiren. Dagu fommt noch, daß die beifere und dunnere Luft mehr Electricitat fortleitet, als fpater bie weniger verdunnte*). Es muß alfo nothwendig im Unfange der Abfuhlung die Glectricitat febr fcwach fenn. Becques rel hat nicht Diejenige Quantitat ber Electricitat gemeffen, welche ber Arpftall bei ieber Temperatur entwickelte, fondern die Summe diefer und ber in den vorhergebenben Beitmomenten entwickelten, und von der Luft nicht fortgeführten Glectricitat. -Rerner glaubt Becquerel, bag die Starfe ber Electricitat mit ber Lange ber Arns ftalle abnehme; eine Meinung, welcher bie Berfuche des Forbes**) widersprechen. Forbes glaubt, daß mit ber Grofe bes Querfchnittes bie Electricitat junehme, mas mir aber nicht aus feinen Berfuchen ju folgen scheint. - Will man diefe Berhalt= niffe bestimmen, fo scheint mir vor allem nothwendig, daß man vollfommen ausgebil= bete Rruftalle, und nicht Bruchftucke anwendet, und feine Aufmerksamfeit nicht bloß auf Lange und Dicke, fondern auch auf bas Borhandensein und die Ausbehnung ber unsommetrischen glachen richtet.

Ferner muß hiebei auch genau auf die Art und Weise, wie der Arpstall gestellt ist, und mit leitenden Körpern in Berbindung sieht, geachtet werden. Schon oben beim Bergfrystall habe ich auf die Wirfung aufmerksam gemacht, welche die Ableitung eines Poles auf das Erscheinen und die Starke der übrigen quöübt. Dieß gilt von allen Arpstallen, und der Grund, warum Priestlen glaubte, daß der Turmalin an beiden Seiten positiv sen, sindet in der starkeren Ableitung des negativen Poles ebenso seinen Erstlärung als die von Erman beobachtete Vertheilung der Electricität am Topase. Bei einem auf einer Seitenstäche liegenden und am +, — Ende verbrochenen Topaskrystall ist es beim Erkalten oft nicht möglich, Spuren von negativer Electricität wahrzunehmen, während der ganze Arpstall gleich — ist, sobald er auf das ausgebildete Ende (—, +) gestellt, und seiner positiven Electricität beraubt wird.

^{*)} Prieftlen (Geschichte ber Electricitat G. 461.) ftellte ben Berfuch unter bem ausges pumpten Recipienten ber Luftpumpe an; bie Electricitat fcbien auf die Salfte vermindert.

^{**)} Transact. of the royal Society of Edinb. XIII. The London and Edinb. Philos. Mag. and Journ. V. 188. Becquerel Traité II. 502.

Auf eine ganz merkwürdige Weise zeigte sich dieser Einstuß bei einem Herrn Prof. Schweigger gehörigen, ausgezeichnet schönen und großen Boracitwürsel mit abges stumpften Kanten. Lag er auf einer Ecke oder Flache, so zeigten sich alle Pole, in den Ecken sowohl als in den Flächen, beim Erwärmen ganz regelmäßig +-+; beim Abkühlen herrschte im erken Fall das +, im zweiten das - vor. Die Wechsel war ren nur durch eine stärkere und schwächere Electricität angedeutet, und nur selten (in einigen Stellungen) gelang es, die Umkehrungen wirklich zu beobachten. Nicht so einzstußreich zeigte sich die Ableitung bei den Versuchen, die ich weiter oben ausführlich mitgetheilt habe. Kennt man indeß die Erscheinungen an dem Boracit, so erkennt man an jenem Stärkerz und Schwächerwerden stets noch recht gut die Wechsel, und dieß tritt in derselben Temperatur ein, bei welcher die Wechsel an andern Krystallen beobachtet werden.

Wichtig icheinen mir bie burch bie Umfehrung bes einen Poles bei ungleich ers warmten Rroftallen hervorgebrachten Erscheinungen ju fein. Berfuche diefer Art mur: ben zuerft von Prieftlen, und fpater von Becquerel angestellt. Wird namlich Der eine Pol des Turmalines ichnell erhipt, und bann von der Warmequelle entfernt, fo zeigen beide Enden beffelben diejenige Clectricitat, welche das der glamme darge: botene Ende beim Erfalten hat. Becquerel*) glaubt, es murde hiebei nur eine Electricitat entwickelt, und biefe Gleichheit beiber Pole fande nur fo lange ftatt, bis Der andere nicht unmittelbar ber Warmequelle dargebotene Pol durch die Mittheilung ber Barme bes andern Endes eine fo hohe Temperatur erhalten habe, daß feine eigene Electricitat hervortrete. Es fcbien mir ju munderbar, bag in diefem einzigen galle nur die eine der beiden Glectricitaten entwickelt merden follte. Bei genauer Erwagung aller Umftande ergibt fich auch augenblicklich, baß die Sache nicht fo fenn fann. Das eine Ende des Turmalines fuhlt fich namlich ab, und muß in feinen nachften Theis Ien feinen electrifchen Begenfat haben, ber es auch ju gleicher Beit fur ben andern Pol ift, welcher, ba er fich erwarmt, bem erften welcher fich abfuhlt, gleichnamig ift. Der Berfuch beftatigte meine Meinung, mit bem merkwurdigen Unterschiede, baf ber Berfuch nur gelang, fobald bas beim Erfalten positive Ende bas heißere mar. Es zeigte fich bann, wenn ber Erpftall aus ber Flamme genommen, diefes Ende als abs fublend +, die mittleren Theile waren -, und bas andere Ende als fich erwarmend wieder +. Burbe bagegen bas beim Erfalten negative Ende ftarfer erhitt, fo fonnte ich in bem andern Ende entweder gar feine oder nur fcmache positive Electricitat fins ben. Es hangt diefe jedoch mahricheinlich nur von bem oben ichon angegebenen Ums

e) Traité II, 64.

ftande ab, daß die positive ftarfer hervortritt als die negative. 3ch behaupte burch: aus nicht, bag die Bertheilung, wo beide Enden negativ und die Mitte positiv gefuns ben wird, unmöglich fen; dieß geht jedoch bestimmt aus obigen Berfuchen hervor, daß ber Rruftall leichter und ftarfer an beiden Enden positiv wird ale negativ. Ueber ben Topas habe ich feine Berfuche in Diefer Abficht bisjett angestellt, glaube aber nicht, bag er in seinem Berhalten vom Turmalin abweichen wird, weil auch bei ihm, und meift noch in hoherem Grade als beim Turmalin, die positive Electricitat sowohl beim Erfalten als auch beim Erwarmen vorherricht, fobald der Arnftall auf einer Seiten= flache liegt. Bichtig icheinen mir biefe Berfuche ju fenn fur bie Erflarung ber Ents frehung von Zwillingefruftallen. 3ch weiß fonft von feinem andern Gefichtspuncte etwas uber ihre Bildung ju fagen. Es gilt namlich bei allen Zwillingefruftallen, fo= viel ich beren bisjett untersucht habe, das Gefet, baf die Arnstalle fich ftets mit einem und bemfelben unfymmetrifchen Ende gufammen legen, fo daß ihre electrifchen Uren eine gerade Linie bilden. Es liegen alfo ftets zwei gleichnamige Pole gufammen, und Die zwei andern auch gleichnamigen nach außen. Beim Bucker, bei der Weinfaure und bem Seignettefalze, find die nach außen liegenden Pole +, -; Die verwachsenen da= gegen -, +. Beim Topas habe ich Arpftalle gefunden, Die freilich im Meugern nichts zeigten, mas auf einen Zwilling hindeutete, außer ber verschiedenen garbung ber beiben Theile, in welche diefe Rroftalle frets burch eine Blache fenfrecht gegen Die Ure getheilt icheinen. Ihr electrifdes Berhalten ließ aber beutlich ihre Zwillingsbildung erfennen. Die beiden außern freien Enden find - +; Die vermachfenen +, -. Siemit ftimmt Daup's weiter oben angegebene Bertheilung ber Glectricitat an einem Rryftalle nur überein, wenn bie Barme im Rryftall noch ftieg. Gine neue Beftati= gung fur diefe Zwillingsfruftalle ift der von Forbes beobachtete Zwilling des Eur= malins, an welchem beibe Enden verbrochen *), und feine Beichen einer 3willings= bildung, außer dem electrifchen Berhalten vorhanden maren. Es maren bei biefem Rruftall gleichfalls, wie beim Topas Die freien Enden -, +; Die vermachfenen +, - **).

Die durchwachsenen Zwillinge des Titanites fonnten nur durch die Ausbildung von zwei electrischen, und an beiden Enden gleichnamigen Aren demfelben Gefet gehorchen.

^{*)} Man hatte die Zwillingsbilbung burch die Lage ber geneigten Flachen erkennen konnen, indem die Krostalle gegen einander um 180° gedreht senn mußten. Wie find die Flaschen der breiseitigen Prismen?

^{**)} Es scheint also in ber Lage ber electrischen Pole gwischen ben Zwillingen ber natürlichen und fünftlichen Arpftallen ein Unterschied zu fenn.

chen. Auf biefe Beise find bie einspringenden Binkel auf beiden Seiten des Rryftalles (gebildet von den Flachen y) -, die nach außen gewandten Flachen P aber +.

Noch will ich bemerken, daß die in den Zwillingen verwachsenen Enden auch die sind, mit welchen die Krystalle sonst verwachsen, mit Ausnahme des Turmalins, der in Bezug auf seine Verwachsung keine solche allgemeine Regelmäßigkeit zeigt; vielz leicht in Folge der großen Starke seiner Electricität*).

Kehren wir jest zu dem oben angeführten Bersuche mit dem ungleichförmig erzwärmten Turmalin zurück. Die Electricitätsvertheilung, welche ich in dem Falle hervordrachte, daß das beim Erkalten positive Ende das stärker erhiste war, stimmt ganz mit der von Fordes an dem Zwillingskrystalle beobachteten Vertheilung überzein. Denken wir uns nun, daß bei der Bildung von Turmalinkrystallen an einer Stelle plöglich eine Temperaturerhöhung Statt sindet, und daß sie das beim Erkalten positive Ende eines Krystalles trifft, so wird auch das andere Ende durch Mittheilung der Erwärmung positiv, und die neu sich anlegenden Theilchen müssen diesem letzten Ende ihre negative Seite zuwenden. Trifft die Temperaturerhöhung das negative Ende, so kann die Vertheilung, daß das andere Ende auch negativ ist, wie wenigstens aus unzsern Bersuchen hervorgeht, nicht auftreten, und kein Zwilling sich bilden. Es gibt also nur Zwillinge, deren freie Seiten beim Erkalten positiv sind. Dasselbe gilt vom Topas. Bei dem Zucker, der Weinsaure und dem Seignettesalz muß ein umgeskehrtes Verhalten sich zeigen. Diese Temperaturerhöhung kann durch das plögliche Kestwerden und Erstarren größerer Mengen hervorgerufen werden.

Man hat die electrischen Arpstalle sehr passend mit dem Magnet verglichen, inzem jedes abgebrochene Stuck derselben gleiche Pole zeigt, wie die ganzen Arpstalle, sobald man auf die durch neu entstandene Flächen veränderte Ableitung Rücksicht nimmt. Es hat sich dieß bei jedem Zerbrechen und Zerspringen der verschiedensten Arpstalle bewährt, es mochten die Bruchstucke auch noch so unregelmäßig seyn. Ja seibst einen in den seinsten Staub verwandelten Turmalin fand Brewster noch elezetrisch, indem dieses seine Pulver einer erwärmten Glasplatte anhing und sich beim Umrühren mit einem sesten Abrer gleichfalls an diesen anhing und zusammen häufte. Aehnlich verhielt sich das Pulver des Mesotyp, selbst nachdem es seines Arpstallwassers beraubt war.

Bielleicht ift die durch Berührung der aufgeloften Arpftallmaffe und des umliegenden Ges
fleines entstandene Electricität Ursache des Aufwachsens mit einem bestimmten Ende. Die
Electricität des Turmasines ift ftarfer als biese Berührungselectricität, und macht das
umliegende Gestein entgegengesetzt electrisch.

Bum Schluffe fen es mir noch erlaubt auf den Bufammenhang aufmerkfam gu machen, welcher swifden ben optischen Ericheinungen und der Repftallelectricitat Statt ju finden icheint. Betrachten wir junachft bie optisch einarigen Arnftalle, fo finden wir hier eine merfwurdige Hebereinstimmung gwischen ber lage ber Are ber großten Elafticitat und ben electrifchen Uren. Im Turmalin als optisch negativen Rroftalle liegt die größte Glafticitatsage in der Richtung der Sauptage, und mit ihr fallt die electrifche Are gusammen; beim Bergfrustall, ber optisch positiv ift, finden wir die größten Clasicitatsagen fenfrecht auf die Sauptare, und diefelbe Anordnung haben auch die electrischen Uren. Da der Boracit, wie Bremfter gefunden, einarig und optifch positiv ift, fo ftimmt auch er in feiner Electricitatevertheilung gang mit bem Bergfruftall überein, wenn wir auf die Pole Rudficht nehmen, welche in den Burs felecken liegen. Schon oben habe ich angegeben, es fen mir febr mabricbeinlich, daß nach ber Sauptage bes Bergfrustalles noch eine fcmachere vierte electrifche Ure liege, und ich muß auch bemerken, daß die electrische Are, welche mit der als Sauptare im Boracit angenommenen gufammenfallt, feinesweges fich burch ihre Starfe auszeich= nete. Gerade ber untere breifiachige Ecfpunct Diefer Are im Dodefaeder 7.11.12. ichien ber ichmachfte unter allen ju feyn. Auf bas Berhaltniß ber plagiedrijchen Rlas den des Bergfruftalles zu den electrifden Bolen habe ich ichon oben aufmerffam gemacht.

Bu dem prismatischen System gehörig und in ihrem optischen Verhalten bestimmt sind der Topas und das Seignettesalz. Der Topas ist optisch positiv, das Seignettessalz optisch negativ. Betrachten wir die Zwillinge von beiden, so liegen im Topas beim Erfalten die positiven Pole nach außen, beim Seignettesalz dagegen die negatiz ven. Es sind also die nach außen liegenden Pole des Zwillings beim Erfalten gleichs namig mit dem optischen Namen.

Im Zucker, der zum monoklinoedrischen Systeme gehort, fand ich die Ebene ber optischen Uren in dem klinodiagonalen Hauptschnitt (oder in der Sbene, welche die Arystalle in 2 symmetrische Halten trennt, wenn wir von den unsymmetrischen Kläschen abselhen). In der Weinsaure dagegen steht die Ebene der optischen Uren senkrecht auf jenem klinodiagonalen Hauptschnitt. Ich konnte wegen Mangel an hinlanglich durchsichtigen Arystallen die Ringe in den Arystallen der Weinsaure nicht beobachten; ich wünschte dies um so mehr, da wahrscheinlich die Ungleichheit beider Halften jedes Ringspstemes mit der polarischen Electricität zusammenhängt.

Ueber die übrigen electrischen Arpstalle ift in optischer Beziehung nichts bekannt. Ich mochte wohl wiffen, wie fich die Arpstalle des Titanits innerhalb derjenigen Tem=

peratur verhalten, bei weicher fie 2 electrische Uren barbieten. Wegen Mangel an burchsichtigen Rryftallen konnte ich jedoch Berfuche hieruber nicht anftellen.

Ueberhaupt mochte ich die Erscheinung ber polarischen Glectricitat an ben uns fommetrifden Arpftallen vergleichen mit ber Polarifation und ber Doppelbrechung bes Lichtes in Medien, beren Glafticitateverhaltniffe nicht nach allen Richtungen gleich find. Go wie burch bie Berichiedenheit ber Clafticitat Die Strahlen bes gemeinen Lichtes getrennt werden, fo wird die Electricitat durch die Ungleichheit ber gorm in ihre beiden Theile gerlegt. In regelmäßigen oder vollfommen fymmetrifchen Rryftallen wurde fie hiernach nie ericheinen fonnen. Denfen wir uns die beiben Rroftalle, welche 3. B. ben Zwilling bes Buckers bilben, in der Lage, welche fie als Zwilling haben, Durcheinander gefchoben, fo verschwindet nicht nur die Unsymmetrie ber Glachen, fondern auch die Schiefwinfligfeit der beiden Uren. Wir erhalten dann einen vollständigen, regelmäßigen Rryftall. Aber ein folder Arpftall fann feine electrifche Polaritat zeigen, indem jest bas -, + Ende bes einen Rryftalles mit bem +, - Ende bes andern gufammenfallt, und umgefehrt. Es mare die electrifche Rraft allerdings bei jeder Temperaturveranderung vorhanden, murde aber megen bes gleichzeitigen Borhandenfenns beider Glectricitaten in bemfelben Puncte nicht mertbar fenn. Dur wenn bas umgebenbe Debium mehr von ber einen als von ber an: bern fortführte, oder die eine ber beiden Electricitat (was jedoch nicht mahricheinlich) ftarfer mare, murbe die gurudbleibende oder überwiegende Electricitat am Electromes ter mahrnehmbar fein. Bielleicht ift dieß der Grund der in den symmetrischen Rryftallen bes Granates und Fluffpathes gefundenen Spuren von positiver Glectricitat, Die beim Ermarmen und Erfalten Diefelben maren.

